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A theoretical study of the elastic properties of a smectic C liquid-crystalline 
system consisting of cylindrical smectic layers is presented. We show that the 
ground state configuration of the c-director for such a system depends on the signs 
of two combinations of the relevant elastic constants. With these configurations as a 
starting point, we describe how a set of walls under certain conditions must be 
formed in the system if a magnetic field is applied at an angle to the cylinder axis. An 
estimate of the thickness of these walls is given. We also show that, depending on 
whether the angle between the magnetic field and the cylinder axis is larger or 
smaller than the tilt of the director with respect to the smectic layer normal, the 
system will exhibit two qualitatively different behaviours. 

1. Introduction 
Smectic C liquid crystals [l] are layered structures for which the elongated 

molecules, being the building blocks of the system, are tilted on average with respect to 
the layer normal. In order to introduce the basic quantities needed to describe a Sc 
liquid crystal and to set the corresponding notation unambiguously we refer to figure 1. 
To characterize the smectic layers we introduce a unit vector a defining the layer 
normal. Assuming that the system we study is free from dislocations and of constant 
layer thickness, the layer normal a must fulfil [l] the constraint 

Vxa=O. (1) 
The average direction of the long molecular axes is defined by a unit vector n, the 
director. For each temperature in a S, liquid crystal the angle between the director and 
the layer normal is fixed. This tilt angle is commonly denoted by 8. The energy required 
to change 8 is, except very close (qCsA - T <0.1 K) to the transition to the smectic A 
phase, normally very large [2] compared to the energies associated with external fields, 
elastic deformations, boundary conditions etc. Thus we can in most cases take the tilt 
angle to be a constant, solely dependent on the temperature of the system; we only 
consider this case here. The projection of the director on to the smectic planes is 
normally described by a unit vector c, commonly called the c-director. To describe the 
direction of the c-director with respect to some reference direction within the smectic 
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50 T. Carlsson et al. 

Figure 1. Notation used in the present work. The average molecular direction, the director, is 
given by a unit vector n making an angle 8 with the layer normal a. The c-director, being a 
unit vector parallel to the projection of thedirector into the smectic planes, is denoted by c 
and is described by the angle 4. The unit vector b, which is also confined to lie within the 
smectic planes, is defined by the relation b=a x c. 

planes we introduce the angle 4. In some cases, for mathematical convenience, we also 
find it convenient to introduce a third unit vector b = a x c. 

In order to characterize the configuration of a S,liquid crystal (assuming a constant 
tilt) we need to specify the spatial variations of a and c. While the only requirement 
imposed on c (disregarding the possiblity of the formation of disclinations) is that it is a 
continuous function in space, the layer normal has to fulfil the constraint of equation 
(1). This severely restricts the possible ways to arrange the smectic layers in space. The 
simplest possible way for the smectic layers to fill space is of course to form planar 
layers. More complex configurations of the smectic planes fulfilling equation (1) are 
arrangements where the smectic layers form concentric cylinders or spheres or parts 
thereof. Even more complicated possible configurations are the focal conics and the 
Dupin cyclides [ 1,3]. Once the layers have formed one of the allowed configurations, 
we may find them to be stable in the sense that all possible perturbations of the layer 
normal a, compatible with the given boundary conditions, will violate the constraint 
V x a=O. We have introduced [4] the term geometrically stable to describe such 
configurations. 

It is an experimental fact [S] that an arrangement of concentric cylindrical smectic 
layers can be formed spontaneously in SA as well as in S, liquid-crystalline systems. The 
orientation of such cylinders will, of course, be random and, in order to fill space 
completely, be accompanied [S] by more complicated structures. One way to form a 
well-defined sample with a configuration of concentric cylindrical smectic layers would 
be to use a compound which posesses a positive dielectric anisotropy and a phase 
sequence nematic+S,-tS,. Confining such a system, being in the nematic phase, 
between two concentric glass cylinders, and applying a suitable electric field across 
these, a configuration with the nematic director pointing radially outwards from the 
cylinder axis will be formed. Lowering the temperature of the system bdow that of the 
nematic-S, transition temperature, we expect a configuration consisting of cylindrical 
smectic layers to be formed. Such a configuration should also be geometrically stable 
when the electric field is released. Lowering the temperature further, taking the system 
into the S, phase, the cylindrical configuration should remain. In this way we expect it 
to be possible to prepare a well defined S, system consisting of concentric cylindrical 
layers with the common axis coinciding with that of the two glass cylinders. The ground 
state configuration of the c-director for such a system will be discussed in the next 
section. With this discussion in mind, the purpose of this paper is to discuss the possible 
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Formation of walls in cylindrical smectic C layers 51 

formation of walls within the smectic layers when a magnetic field, making an angle 
with the cylinder axis, is applied over the sample. 

2. The smectic C elastic layer energy 
In this section we discuss the configuration of the c-director in a cylindrical smectic 

layer and show how the ground state configuration of the system depends upon the 
signs of some relevant elastic constants. To facilitate such a discussion we introduce the 
coordinates and notation according to figure 2. A cylindrical polar coordinate system 
(r,  a, z), the z axis coinciding with the axis of the smectic layers, is introduced. The 
distance radially outwards is thus measured by r, while tl is the polar angle. The basis 
vectors of this coordinate system are such that P will coincide with the smectic layer 
normal while the smectic layers are parallel to the az surface, & always pointing in the 
direction in which the layers are bending. The angle 4 which is used to describe the 
c-director is defined as the angle between the z axis and the c-director, taking positive 
as is indicated in figure 2. Thus # = 0 corresponds to the state for which the c-director is 
parallel to the axis of the smectic cylinders and is pointing upwards in the way the figure 
is drawn. With these assumptions we can write down the following ansatz for the 
director n and the c-director expressed in cylindrical coordinates 

n = Pcos O + d  sin Osin 4 + f sin Ocos 4, 
c =&sin # + f cos 4. 

(2) 

(3) 
The ground state of the system we study is one for which 4 is constant throughout 
space. Even in this case there is, however, some elastic energy built into the system due 
to the bending of the smectic layers. The corresponding free energy density can be 
calculated [4] as 

(4) 
1 

w ~ . ~ . ~ ( $ ) = ~  [A,, sin4#+Azl cos4#-2AI1 sin2#cos24], 

Figure 2. Definition of the coordinates used to describe the cylindrical smectic layers. The 
coordinate system used is a cylindrical one for which the z axis coincides with the axis of 
the smectic cylinders. The r direction is everywhere parallel to the smectic layer normal, 
and the smectic layers are parallel to the tlz surface. The angle 4 measures the rotation of 
the c-director with respect to the z axis, taking q5 positive as is indicated in the right hand 
part of the figure. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
5
7
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1
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where R is the radius of the layer we study and the A,, constants are the three elastic 
constants associated with the bending of the smectic layers. From stability and 
symmetry reasons [4] these three constants must fulfil certain conditions; expanding 
the constants in powers of 8 we can write 

A , ,  = K + AlZtIZ, 
A, ,  = K + A,,8’, 
A , , =  -K+A,,82, 

where K and A, can be assumed to be only weakly temperature dependent. 
Furthermore, the following inequalities must be valid [4]: 

K>O,  (6 4 
(6 b) A,, +A,, + 2A, , > 0. 

By the use of equations (5 )  the layer energy (4) can, apart from an irrelevant constant 
contribution, be written as 

The form of this energy implies that the stable configuration +o of the c-director will 
depend on the signs of the A, constants and we have therefore, to distinguish between 
three cases (the case A,, +A, , < 0 and A,, + A, , < O  is excluded due to the inequality 
(6 b)). By minimizing equation (7) with respect to + we can find the stable configuration 
+o in each case 

Case 1 A,, +A, , > O ,  A,, + A, , >Oatan’ +o = (A,, +A, ,)/(A,, +A, ,), (8 a) 

Case 2 A,,+A,,>0,A2,+A,,<0* +o=o,.n, (8 b) 

Case 3 A1,+A,,<O,A2,+A,,>0~ &=w/2,3n/2, (8 4 

4, + A , , >  0, A,,+ A,, > 0 

(4 

Figure 3. Top view of the smectic cylinder showing the stable director configuration as it 
depends on the signs of the elastic constants A,, + A ,  , and A,, + A ,  ,, The arrows in the 
figure represent the location of the director on the smectic cone. In (a) the c-director is 
pointing at an oblique direction with respect to the cylinder axis. In (b), on the other hand, 
the c-director is pointing parallel to the cylinder axis while in (c) the c-director is 
perpendicular to this axis. 
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where we also note that due to the symmetry of the system the repeated solutions in 
each of equations (8) represent the same physical state. Thus an examination of the 
c-director configuration in the proposed geometry will enable us to determine the signs 
of the constants A,, +A, , and A,, +A,, experimentally. In figure 3 we show the top 
view of the cylindrical layers and the corresponding equilibrium configuration of the 
director for the three different cases. As no experimental information regarding the A, 
constants is yet available, we cannot predict which of the three cases just discussed will 
be exhibited by the system. Our assumption is that all three cases will be feasible in 
reality. 

3. The magnetic free energy density and the generalized magnetic torque 
We now study the effect of applying a tilted magnetic field B = B 8  over a cylindrical 

smectic layer. We assume that the magnetic field makes an angle f l  to the cylinder axis 
and, as indicated in figure 2, the magnetic field is confined within the plane defined by 
the z axis and the direction a=O. The unit vector 8, defining the direction of the field, 
can be expressed by the cylindrical polar coordinate system as 

8 = P sin Bcos a-& sin B sin a + f cos B. 

gm = - 6(n * B)’, 

(9) 

(10) 

The magnetic free energy density gm can be expressed as [6] 

where 6 is the coupling constant of the magnetic field 

po being the permeability of free space and xa the magnetic anisotropy of the liquid 
crystal. From equations (2), (9) and (10) we calculate the magnetic free energy density of 
the system to be 

gm = - ~ [ C O S  8 cos a sin 8- sin 8 sin a sin B sin # +sin 8 cos f l  cos $1’. (12) 

From this energy we can derive the expression of the generalized magnetic torque 
Tm= -dg,/d# acting on the director due to the presence of the field as 

rm = 6[sin2 8 sin’ a sin’ @sin 2# -sin2 8 cos’ B sin 2# 

-2 sin 6 cos 8 sin a cos a sin’ B cos # 
-2 sin 8 cos 8 cos a sin B cos p sin 4 -2 sin’ 8 sin a sin f i  cos f l  cos 241. (13) 

Disregarding the influence of elastic forces, the angles # for which rm vanishes 
represent the equilibrium directions of the c-director in the magnetic field. 

4. Formation of walls 
In this section we show how the application of a magnetic field making an angle B to 

the axis of the cylindrical smectic layers in accord with figure 2 must, for a strong 
enough field, lead to the formation of a number of walls running parallel to the cylinder 
axis. We discuss the case of positive magnetic anisotropy (6 > 0) leaving the obvious 
changes imposed on the analysis in the case S t O  to the reader. Generally, in the 
presence of the magnetic field, the molecules in the case we study want to rotate in such 
a way that the director becomes parallel to the field. For the S ,  liquid crystal the motion 
of the director is, however, restricted to align on the smectic cone, and the effect of the 
field can only be to minimize the angle between the director and the field. Depending on 
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Figure 4. Torque maps for a tilt angle 6 of 20" calculated for five different values of the 
inclination B of the magnetic field with respect to the axis of the smectic cylinders. Notice 
the qualitative topological difference between the torque maps depending on whether fl  is 
smaller or larger than 6. -, Indicates stable equilibrium, ---, unstable equilibrium and 
T J denote the sense of rotation for the c-director. 
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which point of the cylinder we are investigating, this will be achieved by a clockwise or 
counterclockwise rotation. Which particular case occurs depends on the sign of the 
generalized magnetic torque rm given by equation (13). 

From equation (13) we can construct torque maps from which we can deduce the 
behaviour of the system in the presence of the field. In figure 4 we show such torque 
maps calculated for a tilt angle of 20" for five different values of the inclination of the 
magnetic field, namely /?= lo", 19", 21", 30" and 80". The graphs in the figure represent 
the function #(a) for which the magnetic torque vanishes. Thus the graphs show how 
the equilibrium positions (disregarding elasticity) of the c-director change as we travel 
around the smectic cylinder. If a perturbation of the c-director from an equilibrium 
position creates a torque tending to bring it back to the original position, the 
equilibrium is stable and is plotted as a full line, while unstable equilibrium positions 
are plotted as dashed lines. For each point on the cylinder, i.e. for each value of a, we 
have drawn vertical arrows in the figure showing in which direction the magnetic field 
forces the c-director to rotate for a given value of #. We have extended the #-axis to 
cover the interval 4 ~ [  - 270", 270"]. However, we have drawn two horizontal dotted 
lines corresponding to # = f 180" in the figure; everything which falls outside these 
lines contains redundant information and is only included in order to make the 
interpretation of the figure more transparent. From the figure we see that the torque 
maps exhibit a qualitatively different topology depending on whether the inclination f i  
of the magnetic field is larger or smaller than the tilt angle 8. In the case P < O  (for 
example, when fi = 10" and 19") there are always two stable and two unstable equilibrium 
positions of the c-director irrespective of which point on the smectic cylinder we study. 
When, on the other hand, B > S  (for example, when /?=21", 30" and SOO), we see that in 
two intervals around a = 0" and 180" there is one stable and one unstable equilibrium 
only, while in the two intervals around a= 90" and 270" there are two stable and two 
unstable positions of the c-director. 

We are now in a position to understand how walls in many cases are inevitably 
formed in the system when the magnetic field is applied. In 0 2 we showed that the stable 
c-director configuration of the system, in the absence of the field, is the one for which 4 
is constant all around the cylinder, adopting an equilibrium value #o which is some 
angle between zero and 90" depending on the signs of the Aij constants. If we draw the 
corresponding horizontal line in a specific torque map we will for each value of a (i.e. for 
each point on the cylindrical smectic layer) see in which direction the director will 
rotate due to the field. If the line # = 4o intersects an unstable equilibrium curve, the 
sense of rotation will conflict on either side of the corresponding point. If the magnetic 
field is strong enough to overcome the elastic forces, a wall is formed at this point. If we 
have prepared our sample homogeneously in space, this wall extends in the z and r 
directions and has the shape of a plane. 

We now show that, depending on the topology of the torque map, two different 
kinds of walls can be created. In figure 5 we show the situation for which p<O, 
assuming the case 4o = 90". In the upper part of the figure we show the corresponding 
torque map and the line # = do. This line intersects an unstable equilibrium curve twice 
and two walls are created, having twists of A# = 180" and - 180". In the middle part of 
the figure we show the resulting equilibrium values of 4 as a function of CI while the 
lower part shows how the c-director rotates on the smectic cone as we travel around the 
cylindrical smectic layer. In reality the walls will, of course, not be infinitely thin but will 
be smeared out by elasticity. We will however show, in the next section, that this 
smearing out under reasonable experimental conditions will only be of the order of a 
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Wall formation in the case j < O .  The upper part of the figure shows the relevant 
torque map in which a thin line indicates one possible c-director configuration in the 
absence of the magnetic field, &=90". Each time this line intersects an unstable 
equilibrium curve, the sense of rotation for the c-director will be conflicting on either side 
of the corresponding point and thus a wall is created. In this particular case two walls are 
formed and the middle part of the figure shows how the angle d, between the c-director and 
the cylinder axis varies as a function of the position a on the cylindrical smectic layer. The 
lower part of the figure shows a top view of a smectic cylinder indicating how the c-director 
rotates on the smectic cone as we travel around this layer. 
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equilibrium curve, the sense of rotation for the c-director will be conflicting on either side 
of the corresponding point and thus a wall is created. In this particular case three walls are 
formed and the middle part of the figure shows how the angle between the c-director and 
the cylinder axis is varying as a function of the position a on the cylindrical smectic layer. 
The lower part of the figure shows a top view of a smectic cylinder indicating how the 
c-director rotates on the smectic cone as we travel around this layer. 
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fraction of a degree. The situation for which B>e is shown in figure 6. Here there are 
two different possible cases depending on the value of q50. If do is large enough, there are 
again two intersections between the line 4 = 4,, and unstable equilibrium curves, and 
two 180" walls are created in the same manner as in the case discussed previously. If, 
however, $o is small enough we find three intersections. This is the case depicted in 
figure 6 where we have chosen c $ ~  = lo"; here we see that three walls are created, two 
with A$= 180" and one with A+= -360". 

From figures 5 and 6 we conclude that, depending on the values of 8, f i  and $o, two 
different types of wall formation can occur where, provided the magnetic field is strong 
enough, either two or three walls are formed in the cylindrical smectic layers. It is also 
clear that in some cases no walls are formed, but the magnetic field merely induces a 
structure with a smoothly varying $eq(a). Which case will occur depends on how many 
intersections there are between the line 4 = &, and the unstable equilibrium curves. 

5. Estimation of the wall thickness 
We now proceed to estimate the typical thickness of the walls discussed in the 

previous section. The equations governing the elastic behaviour of the c-director in a 
cylindrical smectic layer has been derived by us elsewhere (see equation (27) in [4]). In 
the case studied in the present work we have to add the term R2rm/02 to this equation, 
R being the radius of the layer we study and rm the magnetic generalized torque given 
by equation (13). Generally we now have to introduce two additional elastic constants 
B ,  and B, into the equations. As very little experimental information is as yet available 
regarding their magnitudes, we introduce the approximation Be'= B, = B, in order to 
simplify the present analysis. Assuming the system to be relaxed in the I and z 
directions, a general elastic deformation of the c-director within a smectic layer is now 
given by 

d v Be' =+ 2[(A,, + A ,  ,)cosZ $-(A,, + All)  sin' $18' sin $COS $ + RZr,=O. (14) 

This equation can be considered as a balance of torque equation in which three 
different torques are at equilibrium with each other. The first term represents the 
normal deformational torque, appearing as soon as the c-directur is non-uniform 
(d$/dcl # O )  with respect to the smectic layers. The second term will exist even if 4 is 
constant, unless $ equals one of the equilibrium values discussed in 42, and has its 
origin in the fact that the smectic layers are bending. Finally, the third term is the torque 
due to the application of the magnetic field. 

To use equation (14) to calculate the thickness of the walls created by the magnetic 
field we would need to perform a numerical integration of this equation. The wall 
thickness will also depend upon where on the cylinder it appears, because in different 
positions the magnetic field is oriented differently with respect to the smectic layer. We 
will, however, show that we can use equation (14) to obtain a crude estimate of the wall 
thickness. As no experimental information exists regarding the Aij constants, and as the 
corresponding term only introduces a quantitative change in the features of equation 
(14), we will neglect the influence from this term in our estimate. Introducing equation 
(13) into equation (14), the latter can, disregarding the term containing the Aij 
constants, be written as 
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where f, is a function obtained from equation (13). By introducing an angle yw 
according to 

Be' 
R26 Y:=-, 

and studying equation (15) close to one of its equilibrium solutions #fq, we can expand 
the latter equation to read 

where f, is some other general function. If we assume that the magnetic field is strong 
enough to confine the walls to a narrow interval Aa on the cylinder, the function f2 can 
be treated as a constant, the value of which depends on the tilt angle 8, the inclination of 
the magnetic field b and where on the cylinder the wall will be formed. The value of f2 

seems, when putting 8=20", generally to fall within the interval [0-1,10] and for 
convenience we now assume f2 to equal unity. In such a case equation (17) describes a 
relaxation behaviour of + with the correlation angle yw. From equations (1 1) and (16) 
we thus estimate the thickness of the walls (neglecting any numerical constants of order 
unity) to be 

where we have expressed the thickness in terms of the polar angle of the cylinder over 
which the wall extends. A typical value of the magnetic anisotropy can be taken to be 
[6]  ~ ~ w 1 0 - ~ ,  while one of the few experimental estimations of Be' existing today 
reveals [7] Be'= lo-" N for a S, system where the tilt angle is close to 20". Assuming a 
magnetic field of 1 T to be used, putting the radius of the smectic cylinders equal 
to 5 mm, we now obtain a numerical estimate of yw (po=4n x loT7 Vs/Am) to be 
yw w 7 x lop4 rad w 004". The estimate of yw presented here is of course rather crude, 
but we have nevertheless shown that under reasonable experimental conditions the 
extension of the walls in the a direction is of the order of a small fraction of a degree. 
Thus the walls in most cases should be sharp and clearly observable. 

6. Discussion 
Studies of the elastic properties of smectic layers are currently very scarce. This is 

because the geometrical constraint V x a = 0 in most cases stabilizes the structure of the 
smectic layering. It follows that an external disturbance imposed on the system will 
rarely perturb the smectic layer structure and so will only have an influence on the 
c-director. We have, however, shown previously [4], and in this work, that by a suitable 
geometrical set-up it is possible to gain some information of the Sc elastic layer energy, 
even if the layers themselves stay intact. This is achieved by using the interplay between 
layer deformations and c-director rotations in a system with a cylindrical arrangement 
of the smectic layers. By studying the c-director rotations in such a system we can gain 
some information regarding the elastic properties of the layers in a S, liquid crystal. We 
demonstrated in 8 2 (cf. figure 3) that the ground state of the c-director in a cylindrical 
smectic layer will belong to one of three cases, depending on the signs of the crucial 
elastic constants A,, +A,, and A,, +A,,. If these two combinations of elastic 
constants are of opposite sign, the c-director will either point parallel to the cylinder 
axis (A, , + A, , > 0) or in the same direction as the layers are bending (A2 , + A, , > 0). If 
both of these combinations of constants are positive, the c-director will adopt some 
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intermediate angle, the value of which is given by equation (8 a). Thus the signs of the 
constants A,, + A, , and A,, +A, ,, and possibly also their ratio, can be determined by 
studying a relaxed cylindrical S, layer. 

Applying an oblique magnetic field over the system will, under some circumstances, 
create walls within the cylindrical smectic layers. In order to analyse this situation we 
constructed the torque maps shown in figure 4. In these maps it was shown how the 
equilibrium position of the c-director in the presence of the magnetic field is shifted as 
we travel around the smectic layer. Thus we can show by the construction in figures 5 
and 6, how walls in some cases inevitably must be formed if a magnetic field is applied 
over the system at an angle to the axis of the smectic cylinder. Pepending on the 
circumstances, two ( A 4  = f 180") or three ( A 4  = 180", A 4  = - 36od, A 4  = 180") walls 
will be observed. The discussion in 5 3 and 4 assumed the magnetic anisotropy of the 
sample to be positive (S > 0). In the case 6 < O  the only difference in the analysis of the 
torque maps is that the stable and unstable lines will change place and the arrows 
indicating the sense of rotation of the c-director will be reversed. The qualitative nature 
of the wall pattern in this case will thus be unchanged; however, the walls will appear in 
different positions of the cylinder. 

Most effects exhibited by a liquid-crystalline system in the presence of a magnetic 
field are reproducible if instead an electric field is applied across the sample. However, 
in the case of the electric field the analysis of the behaviour of the system becomes more 
involved, because an inhomogeneous director configuration causes the electric field 
also to become inhomogeneous. Furthermore, the recently reported [8] appearance of 
dielectric biaxiality of S, systems will make the response of the system to electric fields 
even more complex. As can be understood from geometrical considerations, the 
qualitative nature of the wall formation will still be the same in the case of electric 
fields. However, we cannot exclude the possibility that the dielectric biaxiality, if it is 
large enough, can give the torque maps of figures 4-6 a more complex appearance, and 
thus the system in this case will accordingly change its response to the electric field. 

In $ 5  we estimated the typical thickness of the walls to be of the order of a few 
per cent of a degree. Thus we are assured that the walls will be distinct and clearly 
observable. In the derivation of the coherence angle yw we neglected the influence of the 
Aij constants in equation (14). Including the corresponding term into the analysis will 
lead to a renormalization of the denominator in the expression of yb,  R2S+R2S +f(Aij) ,  
where f(Aij) is some general function of the Aij constants, depending on the values of 8 
and fi. If the wall thickness yw is measured, and if we assume that the constant Be' has 
been determined by some independent method, this renormalization of R26 would then 
make it possible to estimate the specific combination of the A,, constants which is 
contained in f(Aij) in the particular case we have studied. 

The basis for the problem discussed in this work is the possibility of preparing a S, 
liquid-crystalline system for which the smectic layers form a set of well defined 
concentric cylinders. We are well aware of the fact that the experimentalist might face 
some unsolvable problems when trying to prepare such a system. However, as the walls 
which the system developed in the presence of the field are expected to have a thickness 
of a fraction of a degree, there is the possibility of circumventing these potential 
problems by instead preparing a sample in which the smectic layers only extend over 
part of a cylinder. This could be achieved by using glass plates which are slightly curved 
in a proper way. Although we will not be able to study the full set of walls in such a 
sample at the same time, we may by rotating the system in the magnetic field, still be 
able to study the walls one at a time. 
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